# PREDICTION OF RETENTION INDICES OF AROMATIC HYDROCARBONS 

## JOSE N. TEJEDOR

Servicio Social de Higiene y Seguridad del Trabajo, Instituto Territorial C/Torrelaguna 73, Madrid-27 (Spain)
(First reccived October 30th, 1978; reviscd manuscript reccived April 12th, 1979)

## SUMMARY

A method for calculating the retention index of aromatic compounds has been developed. The method is based on experimental data and can be applied to any stationary phase whose polarity would lie between that of squalane and that of UCON 50 HB 280 X.

## INTRODUCTION

The Kováts retention index system ${ }^{1}$ is useful in gas-liquid chromatography (GLC), but the qualitative evaluation of chromatograms is very difficult because of the lack of pure standards. Prediction data are important in GLC for both theoretical and practical problems, and many workers have considered different aspects of this problem.

This problem is particularly difficult for aromatic compounds, of which benzene and alkylbenzenes are the most interesting.

Various workers have attempted to predict how the retention index varies with molecular structure ${ }^{2-19}$ and with physical and chemical properties, such as vapour pressure and molar volume ${ }^{20-24}$. Other workers have studied the relationship between the structure of a compound and its retention index, without going as far as predicting the latter in both GLC ${ }^{25-29}$ and gas-solid chromatography ${ }^{30}$.

However, except for the work of Takacs and co-workers ${ }^{3-12}$ and West and Hall ${ }^{19}$, most of the procedures developed for the calculation of retention indices apply only to the stationary phase used in the calculation, usually squalane. Only in the papers by Dimov and co-workers ${ }^{20-24}$ is there a clear relationship between retention index and temperature.

## METHOD OF CALCULATION

Experimental data taken from a paper by Engewald and Wennrich ${ }^{29}$ were used in this study. The stationary phases were squalane, Ucon LB 550 X and Ucon 50 HB 280 X and the temperature was $100^{\circ}$. The number of carbon atoms in the
compounds studied ranges from 7 to 14 . The method is based on the fact that the retention index of a monosubstituied aromatic hydrocarbon in a stationary phase, the polarity of which lies between that of squalane and that of Ucon 50 HB 280 X , can be expressed as

$$
\begin{equation*}
I_{x}^{\mathrm{st} . \mathrm{ph}}=a S_{x} \div b \tag{1}
\end{equation*}
$$

where $I_{x}$ is the retention index of the compound $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}$ in a stationary phase, $S_{x}$ is the contribution of the alkyl group $X$ and $a$ and $b$ are constants depending on the stationary phase. The contributions of the substituents ( $S$ ) are additive and the retention index of a disubstituted derivative of benzene could therefore be expressed as

$$
\begin{equation*}
I_{x . y}^{\mathrm{st} . \mathrm{ph} .}=a^{*}\left(S_{x}+S_{y}\right)+b^{*} \tag{2}
\end{equation*}
$$

where $I_{x . y}$ is the retention index of the compound $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Y}$ in a stationary phase, $S_{x}$ and $S_{y}$ are the contributions of the alkyl groups $X$ and $Y$, respectively, and $a^{*}$ and $b^{*}$ are constants depending on the stationary phase and/or the position of the substituents on the ring.

As a basis of calculation, the value of the retention index of benzene in squalane at $100^{\circ}(650.5)$ has been assigned to the constant $a$, and the value 1.000 for any stationary phase to the contribution of an ethyl group, $S_{\mathrm{E}}$. Substituting into eqn. 1 for the value of ethylbenzene:

On this basis, the retention index for any alkylbenzene can be calculated as shown below.

## Monoalkyl aromatic compounds

Linear alkyl group.

$$
\begin{equation*}
I_{x}^{\mathrm{st} \cdot \mathrm{ph} \cdot\left(100^{\circ}\right)}=a S_{x}+b \tag{4}
\end{equation*}
$$

where

$$
\left.I_{x}^{\text {r-ph. }(100=}\right)=\text { retention index of an } n \text {-alkyl aromatic hydrocarbon on any }
$$ stationary phase, the polarity of which lies between that of squalane and that of Ucon 50 HB 280 X at 100

$$
\begin{aligned}
& a=I_{\text {benzene }}^{\text {squalane }\left(100^{\circ}\right)} \\
& b=I_{\text {ethybenzene }}^{\text {st.ph. } \left.100^{\circ}\right)}-I_{\text {benzene }}^{\text {squalane( } \left.100^{\circ}\right)}
\end{aligned}
$$

$$
S_{x}=\text { contribution of the } n \text {-alkyl group }(\mathbb{M}=\text { methyl }, E=\text { ethyl. }
$$ $n \operatorname{Pr}=n$-propyl, $\quad n B u=n$-butyl, $\quad n \quad \mathrm{Pe}=n$-pentyl, $\quad n \mathrm{He}=n$ hexyl):

$$
x=\mathrm{M} \quad S_{x}=0.867
$$

$$
\begin{align*}
& I_{\text {ethytbenzence }}^{\text {st-ph }\left(100^{\circ}\right)}=I_{\text {benzene }}^{\text {suaplane }\left(100^{\circ}\right)} \cdot 1+b \\
& b=I_{\text {ethylbenzene }}^{\text {st.ph. }}-I_{\text {benzenc }}^{\text {squatane }\left(100^{\circ}\right)} \tag{3}
\end{align*}
$$

$$
\begin{array}{ll}
x=\mathrm{E} & S_{x}=1.000 \\
x=\mathrm{nPr} & S_{x}=1.129 \\
x=\mathrm{nBu} & S_{x}=1.282 \\
x=\mathrm{nPe} & S_{x}=1.429 \\
x=\mathrm{nHe} & S_{x}=1.586
\end{array}
$$

Branched alkyl group.

$$
\begin{equation*}
I_{x}^{\mathrm{st}-\mathrm{ph} .\left(100^{\circ}\right)}=a^{\prime} S_{x}+b^{\prime} \tag{5}
\end{equation*}
$$

where
$I_{x}^{\text {st.ph. }\left(100^{\circ}\right)}=$ retention index of a monoalkyl aromatic hydrocarbon with a branched chain

$$
\begin{align*}
& a^{\prime}=713.19 \\
& b^{\prime}=1.0245 b-73.79 \tag{6}
\end{align*}
$$

$S_{x}=$ contribution of the branched alkyl group (tBu $=$ tert.-butyl, $\mathrm{sBu}=$ sec.-butyl, $\mathrm{iBu}=$ isobutyl, $\mathrm{sPe}=$ sec.-pentyl); this contribution varies with the polarity of the stationary phase:

$$
\begin{array}{ll}
x=\mathrm{iPr} & S_{x}=-70.559 \cdot 10^{-6} P^{\mathrm{st} . \mathrm{ph}}+1.089 \\
x=\mathrm{tBu} & S_{x}=-99.782 \cdot 10^{-6} P^{\mathrm{st} . \mathrm{ph}}+1.182 \\
x=\mathrm{sBu} & S_{x}=-98.736 \cdot 10^{-6} P^{\mathrm{st} . \mathrm{ph}}+1.203 \\
x=\mathrm{iBu} & S_{x}=-147.045 \cdot 10^{-6} P^{\mathrm{st} . \mathrm{ph}}+1.206 \\
x=\mathrm{sPe} & S_{x}=-122.447 \cdot 10^{-6} P^{\mathrm{sr} . \mathrm{ph} .}+1.329 \tag{11}
\end{array}
$$

The value of $P^{\text {sr. nh }}$ is related to the Rohrschneider ${ }^{31}$ constant $x$ by
$P^{\mathrm{st} \text {.ph. }}=100 \mathrm{x}$
$P^{\text {st.ph. }}=I_{\text {benzene }}^{\text {st.ph. }\left(100^{\circ}\right)}-I_{\text {benzenc }}^{\text {squalane }}\left(100^{\circ}\right)$.

Dialkyl aromatic compounds
Para compounds (linear and hranched groups).
$I_{x}^{\mathrm{st} \cdot \mathrm{Dh} .\left(100^{\circ}\right)}=a \Sigma S_{x}+b_{p}$
where
$I_{x}^{\text {st.ph. }\left(100^{\circ}\right)}=$ Retention index of a $p$-dialkyl aromatic hydrocarbon

$$
\begin{align*}
a & =I_{\text {benzene }}^{\text {squalane }\left(100^{\circ}\right)} \\
b_{p} & =I_{p-\text { diethylbenzene }}^{\text {st.ph.(100 }}-2 I_{\text {Eenzene }}^{\text {squalane( } \left.100^{\circ}\right)} \tag{15}
\end{align*}
$$

The term $b_{p}$ can also be expressed as a function of the polarity of the stationary phase:

$$
\begin{equation*}
b_{p}=0.8749 P^{\text {sr.ph. }}-260.5 \tag{16}
\end{equation*}
$$

Ortho and meta compounds (only linear groups).

$$
\begin{equation*}
I_{x}^{\mathrm{st} . \mathrm{ph} \cdot\left(100^{\mathrm{s}}\right)}=a^{\prime \prime} \Sigma S_{x}+b_{\mathrm{s}} \tag{17}
\end{equation*}
$$

where
$I_{x}^{\mathrm{st} . \mathrm{ph} .\left(100^{\circ}\right)}=$ retention index of an $o$ - or $m$-dialkyl aromatic hydrocarbon

$$
\begin{align*}
& a^{\prime \prime}=614.36 \\
& b_{0}=0.9614 P^{\mathrm{st} . \mathrm{ph}}-180.32  \tag{18}\\
& b_{m}=0.8895 P^{\mathrm{st} . \mathrm{ph}}-197.71 \tag{19}
\end{align*}
$$

Owing to insufficient experimental data, neither $o$ - nor $m$-dialkyl aromatic compounds with branched groups nor trisubstituted compounds are considered here.

## RESULTS

Using eqns. $1-19$ the retention indices of 44 mono- and dialkyl aromatic compounds in squalane, Ucon LB 550 X and Ucon 50 HB 280 X at $100^{\circ}$ have been calculated. These retention indices, together with the experimental values and the differences between them, are shown in Table I. The constants $a, a^{\prime}, a^{\prime \prime}, b, b^{\prime}, b_{0}, b_{m}$ and $b_{p}$, and the contribution of branched alkyl groups, are listed in Table II.

Only two of 132 calculated values vary by more than 6 index units (i.u.) from the experimental values. For one, 13 DnPrB in Ucon LB, the experimental retention index seems anomalous considering that it is lower than that of 1 iPr 4 nPrB , whereas it is 13.6 and 16.8 i.u. higher in squalane and Ucon HN , respectively. It is therefore considered that this anomaly could be due to an error in the original paper ${ }^{28}$.

On the other hand, in only seven cases, namely the pairs $1 t B u 4 i B u B / 1 t B u 4 s$ $\mathrm{BuB}, 14 \mathrm{DiBuB} / \operatorname{lnPr} 4 n B u B$ and $14 \mathrm{DnBuB} / 1 n \operatorname{Pr} 4 n P e B$ in squalane, $n B u B / 1 \mathrm{M} 4 n \operatorname{PrB}$ and $1 s \mathrm{Bu} 4 \mathrm{iBuB} / 14 \mathrm{DiBuB}$ in Ucon LB and $n \mathrm{PeB} / 1 \mathrm{M} 4 n B u B$ and $n \mathrm{PeB} / 4 \mathrm{DiPrB}$ in Ucon HB , has an inversion of the experimental values with respect to the calculated values been found, whereas the number of inversions in the elution of two compounds in two different phases is much greater.

The equations have also been applied to the calculation of retention indices in other columns of intermediate polarity and at other temperatures. In this instance eqns. $4,3,5,13,14$ and 15 become, respectively

$$
\begin{align*}
& I_{x}^{\mathrm{st} \cdot \mathrm{ph}(T)}=a S_{x}+b \tag{20}
\end{align*}
$$

$$
\begin{align*}
& I_{x}^{\text {st-ph(T) }}=a^{\prime} S_{x}+b^{\prime}  \tag{22}\\
& P^{\mathrm{st} \text {.ph.(T) }}=I_{\text {benzenc }}^{\text {st.ph.(T) }}-I_{\text {benzenc }}^{\text {suaranec (100 })}  \tag{23}\\
& I_{x}^{\text {st.ph.(T) }}=a \sum S_{x}+b_{p} \\
& b_{p}=I_{D-\text { dieithylbenzene }}^{\text {st-ph }(T)}-2 I_{\text {benzenc }}^{\text {squatane }\left(100^{\circ}\right)}
\end{align*}
$$

TABLE I
RETENTION INDICES OF MONO- AND DIALKYLBENZENES ON SQUALANE, UCON LB $550 \times$ AND UCON $50 \mathrm{HB} 280 \times$ AT $100^{\circ}$
$B=$ benzene $; \mathbf{D}=\mathrm{di}$; all other symbols explained in text (i.e. pp. 280-281).

| Compound | Squalane |  |  | $U \operatorname{con}$ LB 550X |  |  | Ucon 50 HB 280X |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $I_{\text {exp }}$ | $I_{\text {cata }}$ | $\Delta$ | $\overline{I_{\text {exp }}}$ | $I_{\text {calc }}$ | 4 | $I_{\text {exp }}$ | $I_{\text {czie }}$ | 1 |
| MB | 760.1 | 763.5 | 3.4 | 862.1 | 863.8 | 1.7 | 919.9 | 920.7 | 0.8 |
| EB | 850.0 | 850.0 | 0.0 | 950.3 | 950.3 | 0.0 | 1007.2 | 1007.2 | 0.0 |
| 14DMB | 864.6 | 867.5 | 2.9 | 960.5 | 962.4 | 1.9 | 1017.2 | 1017.1 | -0.1 |
| 13DMB | 864.8 | 867.6 | 2.8 | 963.9 | 964.3 | 0.4 | 1021.7 | 1019.7 | -2.0 |
| 12DMB | 886.0 | 885.0 | $-1.0$ | 991.6 | 989.5 | $-2.1$ | 1053.4 | 1049.4 | -4.0 |
| $\mathrm{iPrB}^{\text {P }}$ | 908.4 | 907.3 | -1.1 | 1004.4 | 1004.3 | -0.1 | 1059.5 | 1059.8 | 0.3 |
| $n \mathrm{PrB}$ | 938.0 | 933.9 | -4.1 | 1036.6 | 1034.2 | -2.4 | 1092.4 | 1091.1 | -1.3 |
| 1M3EB | 949.7 | 949.3 | -0.4 | 1047.5 | 1046.0 | $-1.5$ | 1105.4 | 1101.4 | -4.0 |
| 1M4EB | 954.3 | 954.0 | -0.3 | 1047.5 | 1048.9 | 1.4 | 1105.4 | 1103.6 | -1.8 |
| 1M2EB | 966.0 | 966.7 | 0.7 | 1069.0 | 1071.2 | 2.2 | 1130.7 | 1131.1 | 0.4 |
| ${ }_{\text {tBuB }}$ | 971.7 | 973.6 | 1.9 | 1067.7 | 1068.5 | 0.8 | 1123.1 | 1122.5 | -0.6 |
| sBuB | 990.2 | 988.6 | -1.6 | 1085.0 | 1083.5 | -1.5 | 1138.1 | 1137.5 | -0.6 |
| iBuB | 991.3 | 990.7 | -0.6 | 1083.8 | 1082.1 | -1.7 | 1133.9 | 1133.9 | 0.0 |
| 13DEB | 1027.4 | 1031.0 | 3.6 | 1125.5 | 1127.7 | 2.2 | 1181.6 | 1183.1 | 1.5 |
| nBuB | 1036.8 | 1033.4 | -3.4 | 1134.2 | 1133.7 | -0.5 | 1191.8 | 1190.6 | -1.2 |
| 1 M 4 nPrB | 1040.2 | 1037.9 | $-2.3$ | 1134.6 | 1132.8 | $-1.8$ | 1188.4 | 1187.5 | -0.9 |
| 14DEB | 1040.5 | 1040.5 | 0.0 | 1135.4 | 1135.4 | 0.0 | 1190.1 | 1190.1 | 0.0 |
| 1 M 2 nPrB | 1045.6 | 1045.9 | 0.3 | 1146.5 | 1150.4 | 3.9 | 1206.7 | 1210.3 | 3.6 |
| sPeB | 1078.2 | 1078.4 | 0.2 | 1171.5 | 1171.9 | 0.4 | 1224.5 | 1224.5 | 0.0 |
| 1 E 4 nPrB | 1126.4 | 1124.4 | $-2.0$ | 1218.5 | 1219.3 | 0.8 | 1272.5 | 1274.0 | 1.5 |
| $n \mathrm{PeB}$ | 1133.0 | 1129.1 | -3.9 | 1233.2 | 1229.4 | -3.8 | 1289.0 | 1286.3 | -2.7 |
| $1 \mathrm{M4nBuB}$ | 1138.8 | 1137.4 | -1.4 | 1233.6 | 1232.3 | -1.3 | 1288.1 | 1287.0 | -1.1 |
| 14DiPrB | 1154.1 | 1156.3 | 2.1 | 1239.3 | 1240.8 | 1.5 | 1288.9 | 1290.3 | 1.4 |
| liPr 4 PPrB | 1181.9 | 1182.3 | 0.4 | 1269.8 | 1272.0 | 2.2 | 1320.3 | 1324.1 | 3.8 |
| 13 DnPr B | 1195.5 | 1193.9 | $-1.6$ | 1268.3 | 1286.2 | 17.9 | 1337.1 | 1341.6 | 4.5 |
| 14 DrPrB | 1212.5 | 1208.3 | -4.2 | 1302.2 | 1303.2 | 1.0 | 1352.8 | 1357.9 | 5.1 |
| 1E4nBuB | 1227.1 | 1223.9 | -3.2 | 1318.8 | 1318.8 | 0.0 | 1371.8 | 1373.5 | 1.7 |
| nHeB | 1231.0 | 1231.2 | 0.2 | 1331.5 | 1331.5 | 0.0 | 1386.8 | 1388.4 | 1.6 |
| 1 M 4 nPeB | 1236.3 | 1233.0 | -3.3 | 1330.8 | 1327.9 | $-2.9$ | 1384.8 | 1382.6 | -2.2 |
| 14DtBuB | 1281.3 | 1277.3 | -4.0 | 1360.2 | 1357.9 | -2.3 | 1408.5 | 1404.8 | -3.7 |
| ItBu4iBuB | 1290.6 | 1292.9 | 2.3 | 1368.3 | 1370.2 | 1.9 | 1412.1 | 1415.4 | 3.1 |
| ltBu4sBuB | 1290.7 | 1290.9 | 0.2 | 1371.3 | 1371.5 | 0.2 | 1417.9 | 1418.4 | 0.5 |
| 14DsBuB | 1304.3 | 1304.6 | 0.3 | 1383.8 | 1385.2 | 1.4 | 1428.0 | 1432.1 | 4.1 |
| IsBu4iBuB | 1305.8 | 1306.6 | 0.8 | 1383.5 | 1383.9 | 0.4 | 1425.8 | 1428.8 | 3.0 |
| 14 DiBuB | 1307.7 | 1308.5 | 0.8 | 1384.0 | 1382.6 | $-1.4$ | 1425.3 | 1425.6 | 0.3 |
| $\operatorname{lnPranBuB}$ | 1311.0 | 1307.9 | $-3.1$ | 1402.1 | 1402.8 | 0.7 | 1452.0 | 1457.5 | 5.5 |
| 1 E 4 nPeB | 1322.1 | 1319.6 | $-2.5$ | 1415.4 | 1414.5 | $-.09$ | 1468.1 | 1469.2 | 1.1 |
| 1 M 4 nHeB | 1333.4 | 1335.2 | 1.8 | 1429.0 | 1430.1 | 1.1 | 1481.9 | 1484.8 | 2.9 |
| ltBu 4 nBuB | 1345.3 | 1342.3 | -3.0 | 1428.9 | 1430.1 | 1.2 | 1478.8 | 1480.9 | 2.1 |
| $1 s B u 4 n B u B$ | 1358.4 | 1356.0 | -2.4 | 1440.0 | 1443.7 | 3.7 | 1491.5 | 1494.5 | 3.0 |
| liBu4nBuB | 1359.6 | 1357.9 | -1.7 | 1442.1 | 1442.4 | 0.3 | 1487.9 | 1491.3 | 3.4 |
| 14DnBuB | 1410.8 | 1407.4 | --3.4 | 1501.5 | 1502.3 | 0.8 | 1551.5 | 1557.0 | 5.5 |
| 1 mPr 4 nPeB | 1418.9 | 1403.5 | -15.4 | 1497.5 | 1498.4 | 0.9 | 1547.5 | 1553.1 | 5.6 |
| 1 E 4 nHeB | 1421.1 | 1421.7 | 0.6 | 1511.9 | 1516.6 | 4.7 | 1566.8 | 1571.3 | 4.5 |

The results obtained and the experimental data and the differences between them are given in Table III for squalane at $86^{\circ}$ and $115^{\circ 32}$ and for dibutyl phthalte ${ }^{33}$, and in Table IV for squalane and acetyltributyl citrate at $80^{\circ 25}$. The constants used in
TABLE II
RETENTION INDEX OF BENZENE, VALUES OF CONSTANTS, $a_{1}, b_{1} a^{\prime}, b^{\prime}, a^{\prime \prime}, b_{0}, b_{m}, b_{p}$ AND $p^{m . p^{n}}$. AND CONTRIBUTIONS OF BRANCHED ALKYL GROUPS FOR THE STATIONARY PHASES UNDER STUDY
Parameter


TABLE III
RETENTION INDICES OF MONO- AND DIALKYLBENZENES ON SQUALANE AT $86^{\circ}$ AND $115^{\circ}$ AND ON DIBUTYL PHTHALATE AT $86^{\circ}$

| Compourd | Squalane (86) |  | Squalane ( $115^{\circ}$ ) |  |  |  | Dibutyl phthalate ( $86^{\circ}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $I_{e x p}$ | $I_{\text {catc }}$ | J | $I_{\text {cxp }}$ | $I_{\text {culc }}$ | 1 | $I_{\text {exp }}$ | $I_{\text {cutc }}$ | 1 |
| MB | 754.2 | 757.8 | 3.6 | 760.7 | 764.8 | 4.1 | 836.9 | 836.3 | -0.6 |
| EB | 844.3 | 844.3 | 0.0 | 851.3 | 851.3 | 0.0 | 922.8 | 922.8 | 0.0 |
| 14DMB | 858.1 | 864.1 | 6.0 | 864.9 | 870.2 | 5.3 | 936.5 | 939.6 | 3.1 |
| 13 DMB | 860.3 | 864.1 | 3.8 | 866.3 | 870.4 | 4.1 | 939.5 | 940.9 | 1.4 |
| 12 DMB | 880.1 | 881.2 | 1.1 | 888.1 | 888.0 | -0.1 | 965.2 | 964.2 | -1.0 |
| ${ }_{i P r B}$ | 903.5 | 901.4 | -2.1 | 910.4 | 918.6 | -1.8 | - | - | - |
| $n \mathrm{PrB}$ | 932.6 | 928.2 | -4.4 | 940.2 | 935.2 | $-5.0$ | 1011.9 | 1006.7 | $-5.2$ |
| IM3EB | 945.6 | 945.8 | 0.2 | 952.1 | 952.1 | 0.0 | 1024.9 | 1022.6 | $-2.3$ |
| IM4EB | 948.0 | 950.6 | 2.6 | 955.1 | 956.7 | 1.6 | 1026.8 | 1026.1 | -0.7 |
| 1 M 2 EB | 961.2 | 962.9 | 1.7 | 968.8 | 969.7 | 0.9 | 1046.6 | 1045.9 | -0.7 |
| 13DEB | 1025.0 | 1027.5 | 2.5 | - | - | - | - | - | - |
| $n \mathrm{nuB}$ | 1033.0 | 1027.7 | -5.3 | 1040.0 | 1034.7 | $-5.3$ | - | - | - |
| 1 M 2 nPrB | 1042.0 | 1042.2 | 0.2 | 1050.5 | 1048.9 | $-1.6$ | - | - | - |
| $n \mathrm{neB}$ | - | - | - | 1137.6 | 1130.4 | -7.2 | - | - | - |

TABLE IV
RETENTION INDICES OF MONO- AND DIALKYLBENZENES ON SQUALANE AND ACETYLTRIBUTYL CITRATE AT 80

| Compound | Squalane |  |  | Acetyltriburyl citrate |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $I_{\text {cxp }}$ | $I_{\text {catc }}$ | 1 | $I_{\text {exp }}$ | $I_{\text {catc }}$ | 1 |
| MB ${ }^{-}$ | 751.68 | 755.04 | 3.36 | 882.60 | 887.00 | 4.40 |
| EB | 841.56 | 841.56 | 0.00 | 973.52 | 973.52 | 0.00 |
| 14DMB | 855.73 | 860.79 | . 5.06 | 980.48 | 987.39 | 6.91 |
| 13DMB | 857.76 | 862.18 | 4.42 | 983.96 | 983.37 | -0.59 |
| 12DMB | 877.26 | 879.13 | 1.87 | 1010.94 | 1010.12 | -0.82 |
| ${ }_{i} \mathrm{PrB}$ | 901.00 | 898.62 | -2.38 | 1032.42 | 1027.40 | -5.02 |
| ${ }_{n} \mathrm{PrB}$ | 929.74 | 925.47 | -4.27 | 1059.99 | 1057.43 | -2.56 |
| 1 M 3 EB | 943.07 | 943.89 | -0.82 | 1070.53 | 1065.08 | -5.45 |
| 1 M 4 EB | 945.26 | 947.30 | 2.04 | 1071.02 | 1073.90 | 2.88 |
| IM2EB | 958.25 | 960.84 | 2.59 | 1092.09 | 1091.83 | -0.26 |
| tBuB | 967.08 | 965.66 | $-1.42$ | 1099.32 | 1091.58 | -7.74 |
| iBuB | 982.35 | 982.77 | 0.42 | 1108.74 | 1103.71 | $-5.03$ |
| ${ }_{\text {sBuB }}$ | 983.15 | 980.63 | $-2.52$ | 1112.10 | 1105.85 | -6. 25 |
| 1 M 4 iPrB | 1084.39 | 1005.20 | 0.81 | 1129.57 | 1125.94 | -3.63 |
| 1 M 3 nPrB | 1027.78 | 1023.14 | $-4.64$ | 1153.38 | 1144.33 | -9.05 |
| nBub | 1029.42 | 1025.00 | --4.42 | 1160.26 | 1156.96 | -3.30 |
| 1 M 4 nPrB | 1033.02 | 1031.22 | $-1.80$ | 1157.01 | 1157.82 | 0.81 |
| 14 DEB | 1033.82 | 1033.82 | 0.00 | 1160.42 | 1160.42 | 0.00 |
| 1 M 2 nPrB | 1039.41 | 1040.10 | 0.69 | 1171.86 | 1171.08 | -0.78 |
| 1 M 4 tBuB | 1069.11 | 1066.35 | -2.76 | 1195.38 | 1184.49 | -10.89 |
| ${ }_{5} \mathrm{PeB}$ | 1071.59 | 1070.50 | -1.09 | 1200.61 | 1193.57 | -7.04 |
| $n \mathrm{PeB}$ | 1128.58 | 1120.62 | - 7.96 | 1257.89 | 1252.58 | -5.31 |
| 14DiPrB | 1148.55 | 1149.61 | 1.06 | 1274.07 | 1264.50 | $-9.57$ |

the calculation and the contributions of the branched alkyl groups for these phases are given in Table II.

In Table III only one case shows a difference of more than 6 i.u. between the experimental and the calculated values and no inversion is observed, whereas in Table IV the differences are higher, probably because of the difference between the temperature used in the calculation and that used in the experiments is greater, although in only one instance is the difference more tqan 10 i.u. The number of inversions between the experimental and the calculated values is still very small, being only one in squalane and three in acetyltributyl citrate.

Neither Apiezon L $^{33}$ nor more polar phases such as Carbowax $20{ }^{29}$ gave good results.

## CONCLUSIONS

A method allowing the calculation of the retention indices of mono- and dialkylaromatic compounds at $100^{\circ}$ in stationary phases whose polarity lies between that of squalane and that of Ucon 50 HB 280 X and which corresponds to Rohrschneider $x$ constants between 0 and 1.71 has been developed. The method can be applied with good results at temperatures close to $100^{\circ}$. This is shown by the fact that of 213 values calculated in five stationary phases and at four different temperatures, only eleven deviated from the calculated retention indices by more than 6 i.u., and only three by more than 10 i.u.

## REFERENCES

[^0]26 L. Soják, J. Janák and J. A. Rijks, J. Chromatogr,. 135 (1977) 71.
27 L. Soják, J. Janák and J. A. Rijks, J. Chromatogr., 138 (1977) 119.
28 L. Soják, J. Janák and J. A. Rijks, J. Chromatogr., 142 (1977) 177.
29 W. Engewald and L. Wennrich, Chromatographia, 9 (1976) 540.
30 E. V. Kalashnikova, A. V. Kiselev, D. P. Poshkus and K. D. Shcherbakova, J. Chromatogr., 119 (1976) 233.
31 L. Rohrschneider, J. Chromatogr., 22 (1966) 6.
32 L. Sojảk and A. Bučinská, J. Chromutogr., 51 (1970) 75.
33 B. B. Agrawal, K. Tesařik and J. Janảk, J. Chromatogr., 65 (1972) 207.


[^0]:    1 E. Kováts. Helv. Chim. Acra. 41 (1958) 1915.
    2 L. E. Cook and F. M. Raushel, J. Chromatogr., 65 (1972) 556.
    3 J. Takàcs, C. Szita and G. Tarjàn, J. Chromatogr., 56 (1971) 1.
    4 L. Káplár, C. Szita, J. Takács and G. Tarjån, J. Chromatogr., 65 (1972) 115.
    5 J. Takács, Zs. Szentirmai. E. B. Molnár and D. Krảlik, J. Chromatogr., 65 (1972) 121.
    6 E. B. Molnár, P. Móritz and J. Takács, J. Chromatogr., 66 (1972) 205.
    7 J. Takács, Zs. Tálas, I. Bernáth, Gy. Czakó and A. Fischer, J. Chromarogr., 67 (1972) 203.
    8 Zs. Szentirmay, G. Tarján and J. Takács, J. Chromatogr., 73 (1972) 11.
    9 J. M. Takács, J. Chromatogr. Scí., 11 (1973) 210.
    10 J. M. Takács, E. Kocsi, E. Garamvölgyi, E. Eckhart, T. Lombosi, Sz. Nyiredy, Jr., I. Borbély and Gy. Krasznai, J. Chromatogr., 81 (1973) 1.
    11 E. Bojti, M. Mihók, I. Borbély, J. Bárkai and J. M. Takács, J. Chromatogr., 119 (1976) 321.
    12 G. Tarjān, Â. Kíss, G. Kocsis, S. Mészáros and J. M. Takãcs, J. Chromatogr., 119 (1976) 327.
    13 P. Souter, J. Chromatogr. Sci., 12 (1974) 418.
    14 J. M. Takàcs, J. Chromatogr. Sci., 12 (1974) 421.
    15 P. Souter, J. Chromatogr. Sci., 12 (1974) 424.
    16 R. Vanheertum, J. Chromatogr. Sci., 13 (1975) 150.
    17 G. Tarjān, J. Chromatogr. Sci., 14 (1976) 309.
    18 V. Svob and D. Deur-Siftar, J. Chromatogr., 91 (1974) 677.
    19 S. D. West and R. C. Hall, J. Chromatogr. Sci., 13 (1975) 5.
    20 N. Dimov and D. Shopov, J. Chromatogr., 63 (1971) 223
    21 N. Dimov, T. Petkova and D. Shopov, J. Chromatogr.. 74 (1972) 165.
    22 N. Dimov, T. Petkova and D. Shopov, J. Chromatogr., 91 (1974) 691.
    23 N. Dimov, J. Chromatogr., 119 (1976) 109.
    24 N. Dimov and D. Papazova, J. Chromatogr., 137 (1977) 265.
    25 L. Sojāk and J. A. Rijks, J. Chromatogr., 119 (1976) 505.

